Mehr Resilienz für kritische Infrastrukturen
Kritische Infrastrukturen wie Stromnetze oder Verkehrswege sind zunehmend von der Digitalisierung geprägt. Wie sich Versorgungssysteme nachhaltig und zugleich widerstandsfähig gestalten lassen und welche Entscheidungen in kritischen Situationen zu treffen sind, damit befassen sich Forschende am Karlsruher Institut für Technologie (KIT).
Die Arbeitsgruppe Resiliente und Smarte Infrastruktursysteme – RESIS – unter Leitung von Sadeeb Simon Ottenburger und Wolfgang Raskob am Institut für Thermische Energietechnik und Sicherheit erarbeiten dazu auf Künstlicher Intelligenz und Mathematik basierende Konzepte und entwickeln Methoden für robuste Entscheidungen unter Beachtung neuer Risiken und Unsicherheiten.
Umgang mit Unsicherheit gehört dazu
"Die bereits stattfindende Planung künftiger kritischer Infrastrukturen muss neue systemische Risiken und große Unsicherheiten systematisch berücksichtigen und insbesondere negative Auswirkungen einzelner oder mehrerer Ereignisse auf die Gesellschaft verstehen“, sagt Ottenburger. Bezogen auf die Energieversorgung bedeutet dies beispielsweise, dass mit der Energie- und Mobilitätswende das Stromnetz immer wichtiger wird.
Dieses wiederum hänge von Informations- und Kommunikationsnetzen ab. Wie sich die aus neuen Netzstrukturen erwachsenden Gefahren sowie Randbedingungen, beispielsweise die Folgen der Erderwärmung, die Bevölkerungsstruktur oder die Nachfrage nach Strom, Wärme und Verkehr, in Zukunft entwickeln werden, lasse sich jedoch schwer vorhersagen.
Die Arbeitsgruppe RESIS entwickelt daher Konzepte und Methoden zur Gestaltung und zum Betrieb smarter und anpassungsfähiger kritischer Infrastrukturen, besonders Energie-, Wasserversorgungsnetze sowie Verkehrsstrukturen. Zentral ist dabei eine Plattform, die Belastungsszenarien unter verschiedenen Randbedingungen simuliert und dadurch erlaubt, Wechselwirkungen zwischen verschiedenen Teilsystemen und damit systemischen Risiken zu analysieren.
Microgrids sichern Stromversorgung für lebenswichtige Einrichtungen
Um die Resilienz der Energieversorgung zu erhöhen, lassen sich beispielsweise Microgrids integrieren, das heißt, viele kleine intelligente Energiezellen, die nicht nur eine netzstabilisierende Funktion erfüllen, sondern auch vorübergehend autonom funktionieren. So lassen sich kritische Infrastrukturen, wie Krankenhäuser, Apotheken und Feuerwehren, auf verschiedene Microgrids verteilen.
Standorte und Auslegung von Speicher- und Verteilinfrastrukturen sind mit entscheidend, um in kritischen Phasen eine autarke Versorgung zu gewährleisten. „Diese präventiven Designstrategien greifen bereits bei einem Brownout, also einem Spannungsabfall, beispielsweise aufgrund eines Strommangels auf der Übertragungsnetzebene, um einen Blackout zu verhindern“, erklärt Sadeeb Simon Ottenburger.
Soziale Aspekte inbegriffen
Neben den technischen Faktoren binden die Forschenden um Ottenburger und Raskob zunehmend auch soziale Aspekte in ihre Resilienzforschung ein. Kritische Infrastrukturen sind auf das Vertrauen der Bevölkerung angewiesen; präventive Strategien bedürfen der gesellschaftlichen Akzeptanz. Wenn Ressourcen knapp werden, ist von Verbraucherinnen und Verbrauchern Flexibilität gefordert, beispielsweise während einer langanhaltenden europäischen Dunkelflaute, wenn weniger Strom aus regenerativen Quellen bereitgestellt werden kann, sich Energiespeicher leeren, oder Ressourcen aufgrund von Cyberattacken nicht mehr verfügbar sind. (sg)